
Chapter 5

Syntax Directed Translation

By Varun Arora

Outline
 Syntax Directed Definitions

 Evaluation Orders of SDD’s

 Applications of Syntax Directed Translation

 Syntax Directed Translation Schemes

By Varun Arora

Introduction
 We can associate information with a language

construct by attaching attributes to the grammar
symbols.

 A syntax directed definition specifies the values of
attributes by associating semantic rules with the
grammar productions.

Production Semantic Rule

E->E1+T E.code=E1.code||T.code||’+’

• We may alternatively insert the semantic actions inside the grammar

E -> E1+T {print ‘+’}
By Varun Arora

Syntax Directed Definitions
 A SDD is a context free grammar with attributes and

rules
 Attributes are associated with grammar symbols and

rules with productions
 Attributes may be of many kinds: numbers, types,

table references, strings, etc.
 Synthesized attributes
 A synthesized attribute at node N is defined only in

terms of attribute values of children of N and at N it

 Inherited attributes
 An inherited attribute at node N is defined only in terms

of attribute values at N’s parent, N itself and N’s siblings

By Varun Arora

Example of S-attributed SDD

1) L -> E n

2) E -> E1 + T

3) E -> T

4) T -> T1 * F

5) T -> F

6) F -> (E)

7) F -> digit

Production Semantic Rules

L.val = E.val

E.val = E1.val + T.val

E.val = T.val

T.val = T1.val * F.val

T.val = F.val

F.val = E.val

F.val = digit.lexval

By Varun Arora

Example of mixed attributes

1) T -> FT’

2) T’ -> *FT’1

3) T’ -> ε

1) F -> digit

Production Semantic Rules

T’.inh = F.val

T.val = T’.syn

T’1.inh = T’.inh*F.val

T’.syn = T’1.syn

T’.syn = T’.inh

F.val = F.val = digit.lexval

By Varun Arora

Evaluation orders for SDD’s
 A dependency graph is used to determine the order of

computation of attributes

 Dependency graph

 For each parse tree node, the parse tree has a node for
each attribute associated with that node

 If a semantic rule defines the value of synthesized
attribute A.b in terms of the value of X.c then the
dependency graph has an edge from X.c to A.b

 If a semantic rule defines the value of inherited attribute
B.c in terms of the value of X.a then the dependency
graph has an edge from X.c to B.c

 Example! By Varun Arora

Ordering the evaluation of
attributes
 If dependency graph has an edge from M to N then M

must be evaluated before the attribute of N

 Thus the only allowable orders of evaluation are those
sequence of nodes N1,N2,…,Nk such that if there is an
edge from Ni to Nj then i<j

 Such an ordering is called a topological sortof a graph

 Example!

By Varun Arora

S-Attributed definitions
 An SDD is S-attributed if every attribute is synthesized

 We can have a post-order traversal of parse-tree to
evaluate attributes in S-attributed definitions

postorder(N) {

for (each child C of N, from the left) postorder(C);

evaluate the attributes associated with node N;

}

 S-Attributed definitions can be implemented during
bottom-up parsing without the need to explicitly create
parse trees

By Varun Arora

L-Attributed definitions
 A SDD is L-Attributed if the edges in dependency graph

goes from Left to Right but not from Right to Left.

 More precisely, each attribute must be either

 Synthesized

 Inherited, but if there us a production A->X1X2…Xn and there
is an inherited attribute Xi.a computed by a rule associated
with this production, then the rule may only use:

 Inherited attributes associated with the head A

 Either inherited or synthesized attributes associated with the
occurrences of symbols X1,X2,…,Xi-1 located to the left of Xi

 Inherited or synthesized attributes associated with this occurrence
of Xi itself, but in such a way that there is no cycle in the graph

By Varun Arora

Application of Syntax Directed
Translation
 Type checking and intermediate code generation

(chapter 6)

 Construction of syntax trees

 Leaf nodes: Leaf(op,val)

 Interior node: Node(op,c1,c2,…,ck)

 Example:

1) E -> E1 + T

2) E -> E1 - T

3) E -> T

4) T -> (E)

5) T -> id

6) T -> num

Production Semantic Rules

E.node=new node(‘+’, E1.node,T.node)

E.node=new node(‘-’, E1.node,T.node)
E.node = T.node

T.node = E.node

T.node = new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)By Varun Arora

Syntax tree for L-attributed
definition

+
1) E -> TE’

2) E’ -> + TE1’

3) E’ -> -TE1’

4) E’ -> 

5) T -> (E)

6) T -> id

7) T -> num

Production Semantic Rules
E.node=E’.syn

E’.inh=T.node

E1’.inh=new node(‘+’, E’.inh,T.node)

E’.syn=E1’.syn

E1’.inh=new node(‘+’, E’.inh,T.node)

E’.syn=E1’.syn
E’.syn = E’.inh

T.node = E.node

T.node=new Leaf(id,id.entry)

T.node = new Leaf(num,num.val)

By Varun Arora

Syntax directed translation
schemes
 An SDT is a Context Free grammar with program fragments

embedded within production bodies
 Those program fragments are called semantic actions
 They can appear at any position within production body
 Any SDT can be implemented by first building a parse tree

and then performing the actions in a left-to-right depth
first order

 Typically SDT’s are implemented during parsing without
building a parse tree

By Varun Arora

Postfix translation schemes
 Simplest SDDs are those that we can parse the grammar

bottom-up and the SDD is s-attributed

 For such cases we can construct SDT where each action is
placed at the end of the production and is executed along
with the reduction of the body to the head of that
production

 SDT’s with all actions at the right ends of the production
bodies are called postfix SDT’s

By Varun Arora

Example of postfix SDT

1) L -> E n {print(E.val);}

2) E -> E1 + T {E.val=E1.val+T.val;}

3) E -> T {E.val = T.val;}

4) T -> T1 * F {T.val=T1.val*F.val;}

5) T -> F {T.val=F.val;}

6) F -> (E) {F.val=E.val;}

7) F -> digit {F.val=digit.lexval;}

By Varun Arora

Parse-Stack implementation of
postfix SDT’s
 In a shift-reduce parser we can easily implement

semantic action using the parser stack

 For each nonterminal (or state) on the stack we can
associate a record holding its attributes

 Then in a reduction step we can execute the semantic
action at the end of a production to evaluate the
attribute(s) of the non-terminal at the leftside of the
production

 And put the value on the stack in replace of the
rightside of production

By Varun Arora

Example
L -> E n {print(stack[top-1].val);

top=top-1;}

E -> E1 + T {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

E -> T

T -> T1 * F {stack[top-2].val=stack[top-2].val+stack.val;

top=top-2;}

T -> F

F -> (E) {stack[top-2].val=stack[top-1].val

top=top-2;}

F -> digit

By Varun Arora

SDT’s with actions inside
productions
 For a production B->X {a} Y

 If the parse is bottom-up then we
perform action “a” as soon as this
occurrence of X appears on the
top of the parser stack

 If the parser is top down we
perform “a” just before we expand
Y

 Sometimes we cant do things as
easily as explained above

 One example is when we are
parsing this SDT with a bottom-
up parser

1) L -> E n

2) E -> {print(‘+’);} E1 + T

3) E -> T

4) T -> {print(‘*’);} T1 * F

5) T -> F

6) F -> (E)

7) F -> digit {print(digit.lexval);}By Varun Arora

SDT’s with actions inside
productions (cont)
 Any SDT can be

implemented as follows

1. Ignore the actions and
produce a parse tree

2. Examine each interior
node N and add actions
as new children at the
correct position

3. Perform a postorder
traversal and execute
actions when their nodes
are visited

L

E

+E
{print(‘+’);}

T

F

digit

{print(4);}

T

T F*

digit

{print(5);}

F

digit

{print(3);}

{print(‘*’);}

By Varun Arora

SDT’s for L-Attributed definitions
 We can convert an L-attributed SDD into an SDT using

following two rules:

 Embed the action that computes the inherited attributes
for a nonterminal A immediately before that occurrence
of A. if several inherited attributes of A are dpendent on
one another in an acyclic fashion, order them so that
those needed first are computed first

 Place the action of a synthesized attribute for the head
of a production at the end of the body of the production

By Varun Arora

Example
S -> while (C) S1 L1=new();

L2=new();

S1.next=L1;

C.false=S.next;

C.true=L2;

S.code=label||L1||C.code||label||L2||S1.code

S -> while ({L1=new();L2=new();C.false=S.next;C.true=L2;}

C) {S1.next=L1;}

S1{S.code=label||L1||C.code||label||L2||S1.code;}

By Varun Arora

Readings
 Chapter 5 of the book

By Varun Arora

